Journal of Organometallic Chemistry, 110 (1976) 59–66 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

ZUR ELEKTRONENSTRUKTUR METALLORGANISCHER KOMPLEXE DER f-ELEMENTE

III *. KRISTALLFELD-THEORETISCHE ANALYSE DES RAUMTEMPERATUR-ABSORPTIONSSPEKTRUMS VON URAN(IV)-TETRACYCLOPENTADIENYL

H.-D. AMBERGER

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, D-8520 Erlangen, Egerlandstrasse 1 (Deutschland)

(Eingegangen den 27. Oktober 1975)

Summary

The bands of the room temperature absorption spectrum of $U^{IV}(C_5H_5)_4$ have been identified on the basis of the complete energy matrix of the tetrahedral f^2 -system. Using the parameter set $F_2 = 173.94$, $F_4 = 33.71$, $F_6 = 3.89$, $\zeta_{5f} =$ 1706.3, $B_4^0 = -576$ and $B_6^0 = -324.3$ cm⁻¹ a good agreement between observed and calculated signals has been achieved.

Zusammenfassung

Auf der Grundlage der vollständigen Diagonalisierungsmatrix des tetraedrischen f^2 -Systems wurden die Banden des Raumtemperatur-Absorptionsspektrums von $U^{IV}(C_5H_5)_4$ identifiziert. Mit Hilfe des Parametersatzes: $F_2 = 173.94$, $F_4 = 33.71$, $F_6 = 3.89$, $\zeta_{5f} = 1706.3$, $B_4^0 = -576$ und $B_6^0 = -324.3$ cm⁻¹ konnte gute Übereinstimmung zwischen gefundenen und berechneten Signalen erzielt werden.

Einführung

Die von Fischer und Hristidu [2,3] im Jahre 1962 vorgeschlagene quasi-tetra edrische Molekülstruktur des metallorganischen Komplexes Tetracyclopentadienyluran(IV) (η^{5} -C₅H₅)₄U^{IV} = UCp₄, wurde kürzlich durch eine Einkristall-Röntgenstrukturanalyse bestätigt [4,5]. Danach ist das U⁴⁺-Zentralion tetraedrisch von vier äquivalenten *pentahapto*-koordinierten Cp-Liganden so umgeben, dass letztlich S₄-Symmetrie resultiert **. Während die Frage nach der

^{*} II. Mitteilung, siehe.Ref. 1.

^{**} Wie Burns dargelegt hat, liegen im Kristallverband zwei verschiedene S₄-Enantiomere vor, was kristallographisch einer einzigen Spezies mit D_{2d}-Symmetrie entsprechen soll.

geometrischen Struktur von UCp₄ und seinen Homologen [6] hiermit schlüssig beantwortet worden ist, erscheint uns die Frage nach der Elektronenstruktur dieser Verbindungsklasse auch heute noch nicht endgültig gelöst [1].

Die paramagnetische Suszeptibilität von UCp₄ (im Bereich, 1.1 < T < 298 K) wurde in [1] so interpretiert, dass bis Raumtemperatur vier Kristallfeld(= KF)-Niveaus sukzessive thermisch populiert werden. Gemäss gruppentheoretischen Überlegungen ist dies jedoch nur möglich, falls im zugrundeliegenden streng tetraedrischen fiktiven Modellkomplex (η^6 -C₆H₆)₄U⁴⁺ mindestens zwei tief gelegene KF-Zustände der Dimensionen 2 + 3 bzw. 3 + 3 quasi-entartet sind [1]. Modellrechnungen im Rahmen der Näherungen des elektrostatischen Punktladungsansatzes, des angular-overlap-Modells und eines vereinfachten MO-Ansatzes (MHW-MO-Methode) haben ergeben, dass die KF-Aufspaltungsparameter B_4^0 und B_6^0 * des fiktiven Systems U(C₆H₆)₄⁴⁺ negatives Vorzeichen besitzen sollten, und dass innerhalb des chemisch sinnvollen Bereiches: π -Bindungsanteil/ σ -Bindungsanteil = 0.15-0.4 eine quasi-Entartung der zwei am tiefsten gelegenen KF-Zustände Γ_3 und Γ_5 zu erwarten ist [1].

Die experimentell gefundene paramagnetische Suszeptibilität von UCp₄ konnte unter Berücksichtigung der tatsächlichen Symmetrie S_4 [8], bzw. unter Annahme von D_{2d} -Symmetrie (der KF-Hamilton-Operator enthält dann nur reelle Glieder) am besten dadurch erklärt werden, dass die durch Symmetrieerniedrigung von $T_d \rightarrow D_{2d} \rightarrow S_4$ erzeugten vier Folgeterme der fiktiven tetraedrischen Zustände Γ_3 und Γ_5 sich über einen Energiebereich von ca. 250 cm⁻¹ erstrecken, während die Totalaufspaltung der Grundmannigfaltigkeit ${}^{3}H_4$ 1500–2500 cm⁻¹ betragen dürfte [1].

Da die Anpassung der experimentellen Suszeptibilitätskurve von UCp₄ (auf der Grundlage der van Vleck-Beziehung für die paramagnetische Suszeptibilität [9]) nur drei mit grossen Unsicherheiten behaftete Energieseparationen lieferte, während die Zahl der offenen unabhängigen KF-Parameter im Fall von D_{2d} - bzw. S_4 -Symmetrie fünf resp. sechs beträgt, war uns eine definitive Abschätzung der KF-Parameter auf der Grundlage experimenteller Suszeptibilitätsdaten nicht möglich [1].

Erheblich bessere Aussichten, die KF-Parameter von UCp₄ verlässlich angeben zu können, sind unserer Meinung nach durch die quantitative Interpretation des Absorptionsspektrums im sichtbaren und nahen IR-Bereich gegeben. Gemäss den Modellrechnungen bzw. den Suszeptibilitätsmessungen ist, vom KF-theoretischen Standpunkt aus betrachtet, die streng tetraedrische Symmetrie von UCp₄ nur geringfügig gestört, so dass sich die Symmetrieerniedrigung $T_d \rightarrow S_4$ zwar im Tieftemperatur-Magnetismus, jedoch kaum im optischen Absorptionsspektrum (insbesondere im kurzwelligen Bereich) äusserdem dürfte.

Da die Zahl der beobachtbaren Absorptionsbanden im allgemeinen die Zahl der offenen Parameter (hier die Parameter der interelektronischen Wechselwirkung F_2 , F_4 , F_6 , der Spin-Bahn-Kopplung ζ_{sf} und des tetraedrischen KF, B_4^0 und B_6^0) bei weitem übertrifft, besteht dann, bei Kenntnis eines möglich adäquaten

* Die Parameter B_n^0 sind durch den nachstehenden Hamilton-Operator definiert: $H_{KF}(T_d) = B_{4\beta}^0(O_4^0 + 5O_4^0) + B_{6\gamma}^0(O_6^0 - 21O_6^0)$, wobei die O_n^m -Ausdrücke die Bedeutung von Drehimpulsoperatoren haben, und β und γ die von Stevens [7] eingeführten Operator-Äquivalent-Faktoren bedeuten.

60

Ausgangsparameter-Satzes, die Möglichkeit, die gesuchten Parameter im Sinne der Methode der kleinsten Fehlerquadrate "optimal" anzupassen.

Experimentelles

Das in Fig. 1 gezeigte Absorptionsspektrum von frisch sublimiertem UCp₄ wurde im Jahre 1963 von Reid mit Hilfe eines Beckman DK-2A Spektrometers in Form von Remissionsmessungen an polykristallinen Proben aufgenommen. Eine nähere Beschreibung der Aufnahmetechnik ist [10] zu entnehmen. Das in Fig. 2 veranschaulichte Absorptionsspektrum wurde im Jahre 1969 von Kanellakopulos mit einem Cary 14 Spektrometer unter Verwendung einer damals neuen Arbeitstechnik (polykristallines UCp₄ eingebettet in Teflon-Presslingen) aufgenommen. Das in Fig. 2 gezeigte Spektrum ist der Habilitationsschrift von Kanellakopulos entnommen [11].

A. Das Raumtemperatur-Absorptionsspektrum von UCp4

Die Raumtemperatur-Absorptionsspektren von UCp₄ (vgl. Fig. 1 und 2) weisen zwischen 2600 und 650 nm eine Reihe von Banden auf, die wir mit Ausnahme der binären Kombinationsschwingungen bei ca. 4470 bzw. 4390 cm⁻¹, der

Fig. 1. Das Elektronenspektrum von UCp4, gemessen in Remission. Angabe der Bandenlagen in cm⁻¹. Eingeklammerte Banden maxima entsprechen Schwingungszuständen.

* Definiert als $\Sigma \sqrt{(\Delta E_{exp})^2/n}$; n = Zahl der verglichenen Banden bzw. Schultern.

Fig. 2. Das Elektronenspektrum von UCp4, gemessen in Extinktion. Angaben der Bandenlagen in cm⁻¹. Eingeklammerte Bandenmaxima entsprechen Schwingungszuständen.

ternären Kombinationsbanden bei 4940 bzw. 4710 cm⁻¹ und des Signals bei ca. 6125 cm⁻¹ (Oberton der ν (CH)-Schwingung) sämtlich elektronischen Übergängen innerhalb des f^2 -Systems zuschreiben [10]. Etwaige höher gelegene elektronische Übergänge (die bis ca. 250 nm zu erwarten sind) werden durch eine bei ca. 650 nm einsetzende charge-transfer-Bande überdeckt.

Ein Vergleich der in Fig. 1 und Fig. 2 angegebenen Absorptionsspektren zeigt, dass die Spektren zwar in wesentlichen Zügen übereinstimmen, die Bandenlagen jedoch nicht vollkommen identisch sind (mittlere Abweichung *: 47.8 cm^{-1}).

Unter Annahme eines streng tetraedrisch koordinierten U⁴⁺-Zentralions sind im untersuchten Energiebereich (2700–650 nm) ca. 23 KF-Zustände unterschiedlicher Energie zu erwarten (zufällige Entartungen werden vorläufig ausgeschlossen), während unter Annahme von S_4 -Symmetrie ca. 39 KF-Niveaus resultieren sollten. Die Bandenarmut der oben gezeigten Absorptionsspektren deutet somit neben den Ergebnissen der Suszeptibilitätsmessungen und den Modellrechnungen auf der Basis des eletrostatischen Punktladungsansatzes und des angular-overlap-Modells darauf hin, dass die Fünfzähligkeit des Cp-Liganden nur eine kleine Störung der exakten T_d -Symmetrie bewirkt, die sich im Absorptionsspektrum nicht oder nur geringfügig äussert. Es erscheint somit naheliegend, die Raumtemperatur-Absorptionsspektren von UCp₄ unter Annahme eines tetraedrischen Kristallfeldes zu erklären.

B. Wahl eines möglichst adäquaten Ausgangs-Parametersatzes

Die auf der Grundlage von Suszeptibilitätsdaten abgeschätzte Totalaufspaltung (ca. 1500–2500 cm⁻¹) der Grundmannigfaltigkeit ${}^{3}H_{4}$ von UCp₄ entspricht im Rahmen der Näherung des angular-overlap-Modells 0.95 e_{σ} und der KF-Parameter B_{4}^{0} (bei dem als chemisch sinnvoll betrachteten Verhältnis $e_{\pi}/e_{\sigma} = 0.5$) ca. 0.28 e_{σ} [1], so dass sich B_{4}^{0} innerhalb der Grenzen: -525 ± 75 cm⁻¹ bewegen sollte. Die Grösse des KF-Parameters B_{6}^{0} ist durch die Bedinung eingeschränkt, dass die streng tetraedrischen Ausgangszustände Γ_{3} und Γ_{5} quasi-entartet sein sollen ($0 < \Delta E < 150$ cm⁻¹). Unter Verwendung der vollständigen Diagonalisierungsmatrix des tetraedrischen f^{2} -Systems (vgl. Abschnitt C) ist diese Forderung dann näherungsweise erfült, falls der Quotient B_{4}^{0}/B_{6}^{0} (bei den oben angegebenen Grenzen von B_4^0) Werte zwischen 1.8 und 1.4 annimmt [1], so dass sich B_6^0 innerhalb des Intervalles: -350 ± 100 cm⁻¹ bewegen sollte.

Die Tieftemperatur-Absorptionsspektren von $U^{IV}(BD_4)_4$: $Hf^{IV}(BD_4)_4$ wurden auf der Basis von 11 Zuordnungen unter Verwendung der Methode der kleinsten Fehlerquadrate so interpretiert, dass die Parameter der interelektronischen Wechselwirkung, der Spin-Bahn-Kopplung und des (tetraedrischen) Kristallfeldes die in Tab. 2 angegebenen Werte besitzen [12].

Da die KF-Parameter von $U(BD_4)_4$ dem Betrage nach etwas kleiner sind als die oben angegebenen Grenzen der KF-Parameter von UCp_4 , erscheint es naheliegend, dass aufgrund nephelauxetischer und relativistischer nephelauxetischer Effekte die Parameter F_2 , F_4 , F_6 und ζ_{5f} bei UCp_4 geringfügig kleiner sein dürften. Aus den genannten Gründen wähten wir den in Tab. 2 angegebenen Ausgangs-Parametersatz.

C. Quantitative Interpretation des Raumtemperatur-Absorptionsspektrums

Da die Einflüsse der interelektronischen Wechselwirkung, der Spin-Bahn-Kopplung und des KF bei UCp₄ von vergleichbarer Grössenordnung sind, ist es nicht mehr zulässig, die Effekte des KF im Sinne eines Störansatzes zu berücksichtigen, es ist vielmehr eine simultane Diagonalisierung bezüglich der oben

TABELLE 1

KF-Zustand		Berechnet	Beobachtet					
			Kanellakopulos [11]	Reid	Anderson und Crisler [18]			
3 _{H4}	Γ5	0						
3 _{H4}	Γ3	129						
3 _{H4}	Γ₄	722						
3 _{H4}	Γı	2384						
3_{F_2}	Ľa	2437						
$3F_2$	Гз	3903	≈3945, ≈4060	3870, 4050				
$3H_{5}$	Ѓд	5197	5297, 5470	5333, 5480				
3 _{H5}	Γ ₅	6237	6196, 6369	6250, 6370				
$^{3}H_{5}$	Гз	7417	7364	7418	7374			
$^{3}H_{5}$	Γa	7919	7825	7874	7899			
3F3	Γ ₇	6965	a	а	a			
3_{F_3}	Γ_{5}^{-}	8244	8190	8240				
${}^{3}F_{3}$	Г4	8303	8306	8379	8354, 8482?			
${}^{3}F_{4}$	Γ1	8962	8904	8930				
$3F_4$	Γ_5	9426	9390	9470				
3_{F_4}	Γ_4	9785		9787				
$_{F_4}$	Гз	9887	9804, 9970	9814, 9990	9834			
3 _{H6}	Γ_2	10586	a	a	a			
³ H ₆	Γ_{5}^{-}	10756	10750	10776				
3 _{H6}	Γı	10839	10905	10905	10924			
$^{3}H_{6}$	Га	12318		12330				
3He	Гэ	12417	12453	12422				
3 _{H6}	Γs	13289	13106	13159	13142			
1_{D_2}	Γs	13893	1	1	1			
$1D_2$	Гз	14716	f 14327	}14286	J 14310			
3 _{Po}	Γī	14943		14925				
$^{1}G_{4}$	Γ_5	15125	15244	15105				

ZUORDNUNG DER BEOBACHTETEN SIGNALE

^a Die Übergänge $\Gamma_5 \rightarrow \Gamma_2$ bzw. $\Gamma_3 \rightarrow \Gamma_2$ sind symmetrie-verboten.

genannten Einflüsse erforderlich. Bei der Aufstellung der Energiematrix des tetraedrischen f^2 -Systems wurden die Matrixelemente hinsichtlich der interelektronischen Wechselwirkung von Condon und Shortley [13] und die Matrixelemente bezüglich des Spin-Bahn-Kopplungsoperators und des KF von Satten und Margolis [14] übernommen. Die Korrektheit der aufgestellten Matrix wurde dadurch überprüft, dass die vorgeschlagenen Parameter F_2 , F_4 , F_6 , ζ_{sf} , B_4^0 und B_6^0 der kubischen, oktaedrischen bzw. tetraedrischen f^2 -Systeme [N(C₂H₅)₄]₄[U^{IV}-(NCS)₈] [15], [N(CH₃)₄]₂[U^{IV}Cl₆] [16], UCl₄ (gasförmig) [17] und U^{IV} (BD₄)₄: Hf^{IV} (BD₄)₄ [12] in unsere Energiematrix eingesetzt, und die berechneten Eigenwerte mit den entsprechenden Literaturwerten verglichen wurden. Mit Ausnahme einiger KF-Energien des Komplexes [N(C₂H₅)₄]₄[U(NCS)₈] war in allen Fällen vollkommene Übereinstimmung zwischen unseren und den Literaturwerten zu verzeichnen.

Das mit Hilfe des Ausgangs-Parametersatzes (vgl. Tab. 2) berechnete Spektrum des Komplexes UCp₄ stimmte zwar nicht besonders gut mit dem beobachteten überein, es liess jedoch bereits wesentliche charakteristische Züge (Bandengruppierungen) des Raumtemperatur-Absorptionsspektrums erkennen. Bei konstant gehaltenen F_2 , F_4 , F_6 und ζ_{5f} erhielten wir nach einem "trial and error-Verfahren" für $B_4^0 = -505$ und $B_6^0 = -313$ cm⁻¹ recht gute Übereinstimmung zwischen berechneten und beobachteten Signalen. Nach mehreren Anpassungszyklen im Sinne der Methode der kleinsten Fehlerquadrate erhielten wir unter Variation aller Parameter den "optimalen" Parametersatz (in cm⁻¹): $F_2 = 173.9$, $F_4 = 33.71$, $F_6 = 3.89$, $\zeta_{5f} = 1706.3$, $B_4^0 = -576.0$, $B_6^0 = -324.3$. Unter Vernachlässigung der Bande bei ca. 14300 cm⁻¹ und den Schultern bei ca. 9985, 6370, 5475 und 4055 cm⁻¹ (siehe unten) betrug die mittlere Abweichung ($\sum_n \sqrt{(E_{exp} - E_{ber})^2/n}$) zwischen den berechneten und den gefundenen Signalen der Fig. 1 bzw. 2 ca. 61.9 resp. 41.5 cm⁻¹.

Diskussion der Ergebnisse

64

Mit Hilfe des oben angegebenen Parametersatzes konnte, abgesehen von der Bande bei ca. 14300 cm⁻¹ und den Schultern bei ca. 9985, 6270, 5475 und 4055 cm⁻¹, unerwartet gute Übereinstimmung zwischen den berechneten und den beobachteten Bandenlagen erzielt werden. Die Bande bei ca. 14300 cm⁻¹ entsprechend 699.3 nm liegt zwischen den berechneten Energien der Zustände $\Gamma_{s}(^{1}D_{2})$ (720 nm) und $\Gamma_{3}(^{1}D_{2})$ (679.5 mm). Verursacht durch das begrenzte Auflösungsvermögen der verwendeten Spektrometer ist das Zustandekommen dieses Signals unserer Meinung nach, ähnlich wie bei U(BD₄)₄ [12], auf eine Superposition des Γ_{s} - und Γ_{3} -Signals zurückzuführen. Diese Ansicht wird auch dadurch gestützt, dass im Absorptionsspektrum des ebenfalls quasi-tetraedrischen Komplexes Cp₃U^{IV}BH₄ (siehe unten) eine geringfügige Aufspaltung dieser Bande bereits erkennbar wird [19].

Durch die Symmetrieerniedrigung: $T_d \rightarrow S_4$ spalten sowohl die dreifach entarteten Zustände Γ_4 und Γ_5 als auch der zweifach entartete Zustand Γ_3 in jeweils zwei Komponenten auf. Die rechnerisch nicht reproduzierbaren Schultern (bei ca. 4055, 5475, 6370 bzw. 9985 cm⁻¹) der Banden, die den tetraedrischen Zuständen $\Gamma_5({}^3F_2)$, $\Gamma_4({}^3H_5)$, $\Gamma_5({}^3H_5)$ resp. $\Gamma_3({}^3F_4)$ entsprechen, könnten sowohl durch Symmetrieerniedrigungseffekte, als auch durch Superposition von elektronischen und vibronischen Niveaus verursacht werden. Eine definitive Antwort kann erst nach einer näheren Analyse des Tieftemperatur-Absorptionsspektrums auf der Grundlage von D_{2d} - bzw. S_4 -Symmetrie gegeben werden [20].

Die von Anderson und Crisler [18] vorgenommene qualitative Zuordnung der beobachteten Banden zu Russell—Saunders-Multipletts stimmt im Falle der Mannigfaltigkeiten ${}^{3}F_{2}$, ${}^{3}H_{5}$, ${}^{3}F_{3}$ und ${}^{3}H_{6}$ mit unseren Ergebnissen im wesentlichen überein (nur das Signal bei 7899 cm⁻¹ ist nicht der Mannigfaltigkeit ${}^{3}F_{3}$, sondern dem Niveau $\Gamma_{4}({}^{3}H_{5})$ zuzuordnen), während die vorgeschlagene Sequenz: $E({}^{3}P_{0}) < E({}^{1}G_{4}) < E({}^{1}D_{2})$ folgendermassen zu modifizieren ist: $E({}^{1}D_{2}) < E({}^{3}P_{0}) < E({}^{1}G_{4})$. Die Korrektheit unserer Zuordnungen wird durch die KF-theoretischen Analysen der tetraedrischen, oktaedrischen und kubischen Systeme UCl₄ (gasförmig) [17], U(BD_{4})_{4}, [12], [N(CH_{3})_{4}]_{2}UCl_{6} [16] und [N(C₂H₅)₄]₄[U(NCS)₈] [15] eindeutig bestätigt.

Die mit Hilfe des "optimalen" Parametersatzes berechnete Totalaufspaltung der Grundmannigfaltigkeit ${}^{3}H_{4}$ von UCp₄ beträgt 2384 cm⁻¹ und ist somit mit den Totalaufspaltungen anderer hochsymmetrischer Uran(IV)-Systeme vergleichbar (siehe Tab. 2). Die Ligandenfeldstärke des Cp-Ringes bewegt sich demnach im üblichen Rahmen und scheint somit erheblich geringer zu sein als die des Cyclooctatetraenyl-Ringes *.

Verglichen mit dem zweifellos mehr ionisch gebundenen System $[N(CH_3)_4]_2$ -UCl₆ sind die Slater-Parameter F_4 und F_6 geringfügig, und die Parameter F_2 und ζ_{5f} von UCp₄, vermutlich aufgrund nephelauxetischer bzw. relativistischer nephelauxetischer Effekte, deutlich erniedrigt. Eine Gegenüberstellung der Parameterquartetts F_2 , F_4 , F_6 und ζ_{5f} von UCp₄ und UCl₄ erscheint wenig sinnvoll, da die Parametersätze von UCl₄(gasförmig) und UCl₄(fest) [24] erstaunlicherweise stark unterschiedlich sind.

Tab. 2 ist zu entnehmen, dass die KF-Parameter von UCp4 dem Betrage nach

TABELLE 2

Verbindung	F2	F4	F ₆	šsr	B40	B ₆ ⁰	Totalaufsp. der Grund- mannigf. ³ H4	Literatur
[N(CH ₃) ₄] ₂ UCl ₆	191.4	33.83	3.98	1796	912	56.5	2296	16
UCl4	159.1	45.76	2.31	1756	-817.4	-71.2	2465	17
U(BD4)4:Hf(BD4)4	186.7	34.6	3.81	1910.8	-435.5	265	1833	12
U(BH4)4:Hf(BH4)4	186.2	34.2	3,78	1908.9	-436.7	260.5	1828	12
[N(C ₂ H ₅) ₄] ₄ [U(NCS) ₈] UCp ₄	161	30,2	3.35	1500	-1229	521	1610	15 ^a
Ausgangs-Para- metersatz	175	32	3.6	1750	525	-350		
"trial and error"	175	32	3.6	1750	505	313		
Methode der kleinsten Fehlerquadrate	173.9	33.71	3.89	1706.3	-576		2384	

ZUSAMMENSTELLUNG DER BISLANG MITGETEILTEN PARAMETERSÄTZE VON URAN(IV)-VERBINDUNGEN (in cm⁻¹)

^a Ergebnis von Suszeptibilitätsmessungen.

* Die in [21] abgeschätzten KF-Parameter sind nur dann gültig, falls die auf der Grundlage von Röntgenstrukturdaten gefolgerte D_{8h}-Symmetrie [22,23] streng erfüllt ist. nur geringfügig grösser sind als die Parameter von $U(BH_4)_4$:Hf(BH_4)₄, so dass die Elektronenstrukturen beider Verbindungen vergleichbar sein sollten. Diese Vermutung wird auch dadurch bestätigt, dass die Raumtemperatur-Absorption spektren von UCp₄ und Cp₃UBH₄ sehr ähnlich sind. Dieser Befund deutet darau hin, dass die Substitution eines Cp-Liganden durch einen BH_4 -Rest die quasitetraedrische Molekülsymmetrie nur geringfügig stört, und somit die quantitative Interpretation des Absorptionsspektrums unter Annahme von T_d -Symmetri gerechtfertigt ist [19].

In der vorliegenden Arbeit wurden unseres Wissens erstmalig die KF-Parameter eines metallorganischen *f*-Elektronensystems verbindlich bestimmt. Auf der Grundlage der nunmehr bekannten Ligandenfeldstärke des Cp-Ringes ist jetzt eine Basis für ein tieferes Verständnis der gegenwärtig von uns studierten Absorptionsspektren der Verbindungen vom Typ Cp₃UX (X = C₅H₄CH₃, BH₄, BF₄, F, Cl, Br, J, CN, SCN, C(CN)₃, OH, OR, SH, C₃H₅, Alkyl, Benzyl) gegeber [25].

Dank

66

Dem Rechenzentrum der Universität Erlangen-Nürnberg möchte ich an diese Stelle für die Bereitstellung von Rechenzeit, und Herrn Prof. R.D. Fischer für die Überlassung des von A.F. Reid im Jahre 1963 aufgenommenen Raumtempe ratur-Absorptionsspektrums danken.

Literatur

- 1 H.-D. Amberger, R.D. Fischer und B. Kanellakopulos, 2. Naturforsch., im Druck.
- 2 E.O. Fischer und Y. Hristidu, Z. Naturforsch. B, 17 (1962) 275.
- 3 Y. Hristidu, Dissertation, Universität München, 1962.
- 4 J.H. Burns, J. Amer. Chem. Soc., 95 (1973) 3815.
- 5 J.H. Burns, J. Organometal. Chem., 69 (1974) 225.
- 6 D.G. Karraker und J.A. Stone, Inorg. Chem., 11 (1972) 1742.
- 7 K.W.H. Stevens, Proc. Phys. Soc. (London), A 65 (1952) 209.
- 8 H.-D. Amberger, unveröffentlichte Ergebnisse.
- 9 J.H. van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford, University Press, 1932.
- 10 A.F. Reid, D.E. Scaife und P.C. Wailes, Spectrochim. Acta, 20 (1964) 1257.
- 11 B. Kanellakopulos, Habilitationsschrift, Universität Heidelberg, 1972.
- 12 E.R. Bernstein und T.A. Keiderling, J. Chem. Phys., 59 (1973) 2105.
- 13 E.U. Shortley und E.U. Condon, The Theory of Atomic Spectra, Cambridge, University Press, 1959.
- 14 R.A. Satten und J.S. Margolis, J. Chem. Phys., 32 (1960) 573. R.A. Satten und J.S. Margolis, J. Chem. Phys., 33 (1960) 618.
- 15 G. Folcher, G. Goodman, H. Marquet-Ellis, P. Rigny und E. Soulié, J. Inorg. Nucl. Chem., im Druck.
- 16 R.A. Satten, C.L. Schreiber und E.Y. Wong, J. Chem. Phys., 42 (1965) 162.
- 17 J.B. Gruber und H.G. Hecht, J. Chem. Phys., 59 (1973) 1713.
- 18 M.L. Anderson und L.R. Crisler, J. Organometal. Chem., 17 (1969) 345.
- 19 H.-D. Amberger, R.D. Fischer und G.R. Sienel, in Vorbereitung.
- 20 H.-D. Amberger, R.D. Fischer und H. Wagner, in Vorbereitung.
- 21 H.-D. Amberger, R.D. Fischer und B. Kanellakopulos, Theoret. Chim. Acta (Berl.), 37 (1975) 105.
- 22 A. Zalkin, K.N. Raymond, J. Amer. Chem. Soc., 91 (1969) 5667.
- 23 A. Avdeef, K.N. Raymond, K.O. Hodgson und A. Zalkin, Inorg. Chem., 11 (1972) 1083.
- 24 H.G. Hecht und J.B. Gruber, J. Chem. Phys., 60 (1974) 4872.
- 25 H.-D. Amberger, R.D. Fischer und H. Wagner, in Vorbereitung.